If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-14x-50=0
a = 6; b = -14; c = -50;
Δ = b2-4ac
Δ = -142-4·6·(-50)
Δ = 1396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1396}=\sqrt{4*349}=\sqrt{4}*\sqrt{349}=2\sqrt{349}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{349}}{2*6}=\frac{14-2\sqrt{349}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{349}}{2*6}=\frac{14+2\sqrt{349}}{12} $
| 9xH/2=36 | | 162^(2x+1)=128 | | h=1/2=5/4 | | -10+v/8=-10 | | 6x+3(-3x+10)=-3 | | 1.1=2x+x | | 56=(14+w) | | -5+x/3=- | | 0.5-1z/0.5=-5.3 | | 58=–2g | | s-(-10)=10 | | -v+47=290 | | 1.5w+2=8 | | X+44=4x+1- | | -1.1-3.4b=2.3 | | -v+176=51 | | -6x-2(-x+3)=22 | | 2x+10=5x–23 | | -y=15,000(1.04) | | x=1422 | | 2w+2(w+3.5)=5 | | 7x°=105° | | 180-(x+22)=180-(2x-13) | | -2x-3(-4x+10)=60 | | –20y=–160 | | 1x/0.1+3.5=30.5 | | -19y=76 | | –9.16=–2.72(v−6)+–1 | | 2(d+2)=–2 | | x3+21=0 | | -19y=135 | | (2x-6)=(6x-4) |